Simple Summary Glycans play many roles in biological processes. For instance, they mediate cell–cell interaction, viral infection, and protein folding of glycoproteins. Glycoprotein folding in the endoplasmic reticulum (ER) is… Click to show full abstract
Simple Summary Glycans play many roles in biological processes. For instance, they mediate cell–cell interaction, viral infection, and protein folding of glycoproteins. Glycoprotein folding in the endoplasmic reticulum (ER) is closely related to the onset of diseases such as misfolding diseases caused by accumulation of misfolded proteins in the ER. In this review, we focused on oligomannose-type glycan processing in the ER, which has central roles in glycoprotein folding in the ER, and we summarise relationship between oligomannose-type glycan processing and misfolding diseases arising from the disruption of ER homeostasis. Abstract Glycoprotein folding plays a critical role in sorting glycoprotein secretion and degradation in the endoplasmic reticulum (ER). Furthermore, relationships between glycoprotein folding and several diseases, such as type 2 diabetes and various neurodegenerative disorders, are indicated. Patients’ cells with type 2 diabetes, and various neurodegenerative disorders induce ER stress, against which the cells utilize the unfolded protein response for protection. However, in some cases, chronic and/or massive ER stress causes critical damage to cells, leading to the onset of ER stress-related diseases, which are categorized into misfolding diseases. Accumulation of misfolded proteins may be a cause of ER stress, in this respect, perturbation of oligomannose-type glycan processing in the ER may occur. A great number of studies indicate the relationships between ER stress and misfolding diseases, while little evidence has been reported on the connection between oligomannose-type glycan processing and misfolding diseases. In this review, we summarize alteration of oligomannose-type glycan processing in several ER stress-related diseases, especially misfolding diseases and show the possibility of these alteration of oligomannose-type glycan processing as indicators of diseases.
               
Click one of the above tabs to view related content.