LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Responses of Fine Roots at Different Soil Depths to Different Thinning Intensities in a Secondary Forest in the Qinling Mountains, China

Photo by jeremybishop from unsplash

Simple Summary Fine roots of different sizes make critical contributions to carbon stocks and terrestrial productivity, but the changed characteristics of fine roots with different diameters at different soil depths… Click to show full abstract

Simple Summary Fine roots of different sizes make critical contributions to carbon stocks and terrestrial productivity, but the changed characteristics of fine roots with different diameters at different soil depths under thinning disturbances remain poorly understood. In our study, we aimed to elucidate the response characteristics of fine roots with different diameters to thinning intensities at different soil depths, and to explore the driving mechanism of the change in the fine-root characteristics. We found that higher thinning intensities negatively affected 0.5–1 mm and 1–2 mm fine-root biomass, while the <0.5 mm fine-root characteristics fluctuated with increasing thinning intensities. Our results suggest that the thinning intensity exhibits varied influential mechanisms on the changed characteristics of <0.5 mm fine roots and thicker fine roots (0.5–2 mm). Collectively, our findings provide important insights into the effects of forest management on changes in fine-root characteristics, and supplement meaningful data on fine-root productivity to improve the parameterization of future ecological models. Abstract Fine roots make critical contributions to carbon stocks and terrestrial productivity, and fine roots with different diameters exhibit functional heterogeneity. However, the changed characteristics of fine roots with different diameters at different soil depths following thinning disturbances are poorly understood. We investigated the biomass, production, mortality and turnover rate of <0.5 mm, 0.5–1 mm, and 1–2 mm fine roots at 0–20 cm, 20–40 cm, and 40–60 cm soil depths under five thinning intensities (0%, 15%, 30%, 45%, and 60%) in a secondary forest in the Qinling Mountains. The biomass, production and turnover rate of <0.5 mm fine roots fluctuated with increasing thinning intensities, while the 0.5–1 mm and 1–2 mm fine-root biomass significantly decreased. The thinning intensities had no effects on the fine-root necromass or mortality. The change in the fine-root characteristics in deeper soils was more sensitive to the thinning intensities. The principal component analysis results showed that increased <0.5 mm fine-root biomass and production resulted from increased shrub and herb diversity and biomass and decreased soil nutrient availability, stand volume, and litter biomass, whereas the 0.5–1 mm and 1–2 mm fine-root biomass showed the opposite trends and changes. Our results suggest that different thinning intensities exhibit varied influential mechanisms on the changed characteristics of fine roots with different diameters.

Keywords: roots different; thinning intensities; fine roots; fine root; soil depths

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.