LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structure and Strength of Bovine and Equine Amniotic Membrane

Photo from wikipedia

Simple Summary Thin, strong scaffold materials are needed for surgical applications. There is a limited selection of available materials and new materials are required. Amnionic membrane from cattle and horses… Click to show full abstract

Simple Summary Thin, strong scaffold materials are needed for surgical applications. There is a limited selection of available materials and new materials are required. Amnionic membrane from cattle and horses were investigated for this purpose. The structure of these materials was characterized with synchrotron techniques and the strength was measured. A possible relationship between the structure and strength was identified. These amnion materials from animal sources are strong, thin, and elastic materials, although weaker than some other collagen tissues. They may be suitable for use in surgery as an alternative to material from human donors. Abstract Thin, strong scaffold materials are needed for surgical applications. New materials are required, particularly those readily available, such as from non-human sources. Bovine amniotic membrane (antepartum) and equine amniotic membrane (postpartum) were characterized with tear and tensile tests. The structural arrangement of the collagen fibrils was determined by small-angle X-ray scattering, scanning electron microscopy, and ultrasonic imaging. Bovine amnion had a thickness-normalized tear strength of 12.6 (3.8) N/mm, while equine amnion was 14.8 (5.3) N/mm. SAXS analysis of the collagen fibril arrangement yielded an orientation index of 0.587 (0.06) and 0.681 (0.05) for bovine and equine, respectively. This may indicate a relationship between more highly aligned collagen fibrils and greater strength, as seen in other materials. Amnion from bovine or equine sources are strong, thin, elastic materials, although weaker than other collagen tissue materials commonly used, that may find application in surgery as an alternative to material from human donors.

Keywords: strength; structure; membrane; bovine equine; amniotic membrane

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.