LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Direct Interaction between Cyclodextrins and TASK Channels Decreases the Leak Current in Cerebellar Granule Neurons

Photo from wikipedia

Simple Summary Cyclodextrins are cyclic oligosaccharides used to deplete cholesterol from cellular membranes. The effects of methyl-β-cyclodextrin (MβCD) on cellular functions originate principally from reductions in cholesterol levels. In this… Click to show full abstract

Simple Summary Cyclodextrins are cyclic oligosaccharides used to deplete cholesterol from cellular membranes. The effects of methyl-β-cyclodextrin (MβCD) on cellular functions originate principally from reductions in cholesterol levels. In this study, using immunocytochemistry, heterologous expression of K2P channels, and cholesterol-depleting maneuvers, we provide evidence of expression in cultured rat cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels and their association with lipid rafts using the specific lipids raft markers. In addition, we show a direct blocking with MβCD of TASK-1 and TASK-3 channels as well as for the covalently concatenated heterodimer TASK-1/TASK-3. Abstract Two pore domain potassium channels (K2P) are strongly expressed in the nervous system (CNS), where they play a central role in excitability. These channels give rise to background K+ currents, also known as IKSO (standing-outward potassium current). We detected the expression in primary cultured cerebellar granule neurons (CGNs) of TWIK-1 (K2P1), TASK-1 (K2P3), TASK-3 (K2P9), and TRESK (K2P18) channels by immunocytochemistry and their association with lipid rafts using the specific lipids raft markers flotillin-2 and caveolin-1. At the functional level, methyl-β-cyclodextrin (MβCD, 5 mM) reduced IKSO currents by ~40% in CGN cells. To dissect out this effect, we heterologously expressed the human TWIK-1, TASK-1, TASK-3, and TRESK channels in HEK-293 cells. MβCD directly blocked TASK-1 and TASK-3 channels and the covalently concatenated heterodimer TASK-1/TASK-3 currents. Conversely, MβCD did not affect TWIK-1- and TRESK-mediated K+ currents. On the other hand, the cholesterol-depleting agent filipin III did not affect TASK-1/TASK-3 channels. Together, the results suggest that neuronal background K+ channels are associated to lipid raft environments whilst the functional activity is independent of the cholesterol membrane organization.

Keywords: task task; granule neurons; cerebellar granule; task; task channels

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.