LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Micro-Computed Tomography for the Estimation of the Post-Mortem Interval of Human Skeletal Remains

Photo from wikipedia

Simple Summary With a short sample-preparation time, micro-computer tomography provides a non-destructive method to estimate the post-mortem interval. With a deep learning approach for post-mortem interval estimation (ranging from one… Click to show full abstract

Simple Summary With a short sample-preparation time, micro-computer tomography provides a non-destructive method to estimate the post-mortem interval. With a deep learning approach for post-mortem interval estimation (ranging from one day to 2000 years) in bones, the estimation can be approximated with high precision. Abstract It is challenging to estimate the post-mortem interval (PMI) of skeletal remains within a forensic context. As a result of their interactions with the environment, bones undergo several chemical and physical changes after death. So far, multiple methods have been used to follow up on post-mortem changes. There is, however, no definitive way to estimate the PMI of skeletal remains. This research aimed to propose a methodology capable of estimating the PMI using micro-computed tomography measurements of 104 human skeletal remains with PMIs between one day and 2000 years. The present study indicates that micro-computed tomography could be considered an objective and precise method of PMI evaluation in forensic medicine. The measured parameters show a significant difference regarding the PMI for Cort Porosity p < 0.001, BV/TV p > 0.001, Mean1 p > 0.001 and Mean2 p > 0.005. Using a machine learning approach, the neural network showed an accuracy of 99% for distinguishing between samples with a PMI of less than 100 years and archaeological samples.

Keywords: tomography; post mortem; mortem interval; skeletal remains; post

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.