LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

NRSF/REST-Mediated Epigenomic Regulation in the Heart: Transcriptional Control of Natriuretic Peptides and Beyond

Photo from wikipedia

Simple Summary Reactivation of the fetal cardiac gene program, such as those encoding atrial and brain natriuretic peptides (ANP and BNP, respectively), is a characteristic feature of failing hearts. We… Click to show full abstract

Simple Summary Reactivation of the fetal cardiac gene program, such as those encoding atrial and brain natriuretic peptides (ANP and BNP, respectively), is a characteristic feature of failing hearts. We previously revealed that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also called repressor element-1-silencing transcription factor (REST), plays a crucial role in the transcriptional control of ANP, BNP and other fetal cardiac genes through collaboration with various other transcription factors to maintain physiological cardiac function and electrical stability. Increased production of ANP and BNP prevents the progression of heart failure, but reactivation of Gαo and fetal-type cardiac ion channels (T-type Ca2+ and HCN channels) leads to deteriorated cardiac function and lethal arrhythmias observed in mice with disturbed NRSF function. Epigenetic regulators with which NRSF forms a complex modify histone acetylation and methylation, thereby participating in NRSF-mediated transcriptional regulation. Further comprehensive studies will lead to clarification of the molecular mechanisms underlying the development of cardiac dysfunction and heart failure. Abstract Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also named repressor element-1-silencing transcription factor (REST), which was initially detected as a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.

Keywords: anp bnp; repressor; regulation; heart; fetal cardiac

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.