Simple Summary Algae are an important source of bioactive compounds. The interest in microalgae is increasing due to their high-value products and the advantage of biomass cultivation under controlled conditions.… Click to show full abstract
Simple Summary Algae are an important source of bioactive compounds. The interest in microalgae is increasing due to their high-value products and the advantage of biomass cultivation under controlled conditions. Polysaccharides are released by algae and microalgae species and have been reported to have bioactivities found beneficial to human health. Despite the recognized importance of these organisms, the structure of polysaccharides in microalgae has been practically unexplored in contrast to that of macroalgae. Only a few microalgae polysaccharide structures have been solved due to the difficulties in the extraction of pure samples and the complexity of their chemical structures. Reports emphasize how the molecular weight, the content of sulfate groups, and the negative charge may be responsible for their multiple bioactivities. To better understand the uses and potential applications of extracellular polysaccharides, it is necessary to know their structure and physicochemical properties, which include molecular weight and chain conformation, since they are decisive in their biochemical behavior. Abstract In the present study, a culture of Chaetoceros muelleri, a cosmopolitan planktonic diatom microalga present in the Sea of Cortez, was established under controlled laboratory conditions. A sulfated polysaccharide (CMSP) extraction was carried out from the biomass obtained, resulting in a yield of 2.2% (w/w of dry biomass). The CMSP sample was analyzed by Fourier transform infrared spectroscopy, showing bands ranging from 3405 to 590 cm−1 and a sulfate substitution degree of 0.10. Scanning electron microscopy with elemental analysis revealed that the CMSP particles are irregularly shaped with non-acute angles and contain sulfur. High-performance liquid chromatography coupled to a dynamic light-scattering detector yielded molecular weight (Mw), polydispersity index (PDI), intrinsic viscosity [η], and hydrodynamic radius (Rh) values of 4.13 kDa, 2.0, 4.68 mL/g, and 1.3 nm, respectively, for the CMSP. This polysaccharide did not present cytotoxicity in CCD-841 colon cells. The antioxidant activity and the glycemic index of the CMSP were 23% and 49, respectively, which gives this molecule an added value by keeping low glycemic levels and exerting antioxidant activity simultaneously.
               
Click one of the above tabs to view related content.