LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MicroRNAs as Mediators of Adipose Thermogenesis and Potential Therapeutic Targets for Obesity

Photo from wikipedia

Simple Summary Thermogenesis in beige and brown adipose tissue has a significant role in combating metabolic disorders, such as type 2 diabetes and diet-induced obesity. A large number of studies… Click to show full abstract

Simple Summary Thermogenesis in beige and brown adipose tissue has a significant role in combating metabolic disorders, such as type 2 diabetes and diet-induced obesity. A large number of studies in recent years have demonstrated that microRNAs play an essential role in regulating adipose thermogenesis and offer considerable potential as a critical new target for obesity treatment. In this review, we highlight the diverse roles of microRNAs in adipose thermogenesis and identify their regulatory roles in the development of obesity. Abstract Obesity is a growing health problem worldwide, associated with an increased risk of multiple chronic diseases. The thermogenic activity of brown adipose tissue (BAT) correlates with leanness in adults. Understanding the mechanisms behind BAT activation and the process of white fat “browning” has important implications for developing new treatments to combat obesity. MicroRNAs (miRNAs) are small transcriptional regulators that control gene expression in various tissues, including adipose tissue. Recent studies show that miRNAs are involved in adipogenesis and adipose tissue thermogenesis. In this review, we discuss recent advances in the role of miRNAs in adipocyte thermogenesis and obesity. The potential for miRNA-based therapies for obesity and recommendations for future research are highlighted, which may help provide new targets for treating obesity and obesity-related diseases.

Keywords: obesity; adipose tissue; adipose thermogenesis; obesity micrornas

Journal Title: Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.