The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to… Click to show full abstract
The tetrasaccharide structures Siaα2,3Galβ1,3(Fucα1,4)GlcNAc and Siaα2,3Galβ1,4(Fucα1,3)GlcNAc constitute the epitopes of the carbohydrate antigens sialyl-Lewis a (sLea) and sialyl-Lewis x (sLex), respectively, and are the minimal requirement for selectin binding to their counter-receptors. Interaction of sLex expressed on the cell surface of leucocytes with E-selectin on endothelial cells allows their arrest and promotes their extravasation. Similarly, the rolling of cancer cells ectopically expressing the selectin ligands on endothelial cells is potentially a crucial step favoring the metastatic process. In this review, we focus on the biosynthetic steps giving rise to selectin ligand expression in cell lines and native tissues of gastrointestinal origin, trying to understand whether and how they are deregulated in cancer. We also discuss the use of such molecules in the diagnosis of gastrointestinal cancers, particularly in light of recent data questioning the ability of colon cancers to express sLea and the possible use of circulating sLex in the early detection of pancreatic cancer. Finally, we reviewed the data dealing with the mechanisms that link selectin ligand expression in gastrointestinal cells to cancer malignancy. This promising research field seems to require additional data on native patient tissues to reach more definitive conclusions.
               
Click one of the above tabs to view related content.