Elevation of nonfasting triglyceride (TG) levels above 1.8 g/L (2 mmol/L) is associated with increased risk of cardiovascular diseases. Exacerbated postprandial hypertriglyceridemia (PP–HTG) and metabolic context both modulate the overall… Click to show full abstract
Elevation of nonfasting triglyceride (TG) levels above 1.8 g/L (2 mmol/L) is associated with increased risk of cardiovascular diseases. Exacerbated postprandial hypertriglyceridemia (PP–HTG) and metabolic context both modulate the overall efficacy of the reverse cholesterol transport (RCT) pathway, but the specific contribution of exaggerated PP–HTG on RCT efficacy remains indeterminate. Healthy male volunteers (n = 78) exhibiting no clinical features of metabolic disorders underwent a postprandial exploration following consumption of a typical Western meal providing 1200 kcal. Subjects were stratified according to maximal nonfasting TG levels reached after ingestion of the test meal into subjects with a desirable PP–TG response (GLow, TG < 1.8 g/L, n = 47) and subjects with an undesirable PP–TG response (GHigh, TG > 1.8 g/L, n = 31). The impact of the degree of PP–TG response on major steps of RCT pathway, including cholesterol efflux from human macrophages, cholesteryl ester transfer protein (CETP) activity, and hepatic high-density lipoprotein (HDL)-cholesteryl ester (CE) selective uptake, was evaluated. Cholesterol efflux from human macrophages was not significantly affected by the degree of the PP–TG response. Postprandial increase in CETP-mediated CE transfer from HDL to triglyceride-rich lipoprotein particles, and more specifically to chylomicrons, was enhanced in GHigh vs. GLow. The hepatic HDL-CE delivery was reduced in subjects from GHigh in comparison with those from GLow. Undesirable PP–TG response induces an overall reduction in RCT efficacy that contributes to the onset elevation of both fasting and nonfasting TG levels and to the development of cardiometabolic diseases.
               
Click one of the above tabs to view related content.