LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Extracellular Polymeric Substances Facilitate the Adsorption and Migration of Cu2+ and Cd2+ in Saturated Porous Media

Photo from wikipedia

Heavy metal contamination in groundwater is a serious environmental problem. Many microorganisms that survive in subsurface porous media also produce extracellular polymeric substances (EPS), but little is known about the… Click to show full abstract

Heavy metal contamination in groundwater is a serious environmental problem. Many microorganisms that survive in subsurface porous media also produce extracellular polymeric substances (EPS), but little is known about the effect of these EPS on the fate and transport of heavy metals in aquifers. In this study, EPS extracted from soil with a steam method were used to study the adsorption behaviors of Cu2+ and Cd2+, employing quartz sand as a subsurface porous medium. The results showed that EPS had a good adsorption capacity for Cu2+ (13.5 mg/g) and Cd2+ (14.1 mg/g) that can be viewed using the Temkin and Freundlich models, respectively. At a pH value of 6.5 ± 0.1 and a temperature of 20 °C, EPS showed a greater affinity for Cu2+ than for Cd2+. The binding force between EPS and quartz sand was weak. The prior saturation of the sand media with EPS solution can significantly promote the migration of the Cu2+ and Cd2+ in sand columns by 8.8% and 32.1%, respectively. When treating both metals simultaneously, the migration of Cd2+ was found to be greater than that of Cu2+. This also demonstrated that EPS can promote the co-migration of Cu2+ and Cd2+ in saturated porous media.

Keywords: adsorption; cu2; cu2 cd2; migration cu2; porous media

Journal Title: Biomolecules
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.