LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Silico Insights towards the Identification of SARS-CoV-2 NSP13 Helicase Druggable Pockets

Photo from wikipedia

The merging of distinct computational approaches has become a powerful strategy for discovering new biologically active compounds. By using molecular modeling, significant efforts have recently resulted in the development of… Click to show full abstract

The merging of distinct computational approaches has become a powerful strategy for discovering new biologically active compounds. By using molecular modeling, significant efforts have recently resulted in the development of new molecules, demonstrating high efficiency in reducing the replication of severe acute respiratory coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic. We have focused our interest on non-structural protein Nsp13 (NTPase/helicase), as a crucial protein, embedded in the replication–transcription complex (RTC), that controls the virus life cycle. To assist in the identification of the most druggable surfaces of Nsps13, we applied a combination of four computational tools: FTMap, SiteMap, Fpocket and LigandScout. These software packages explored the binding sites for different three-dimensional structures of RTC complexes (PDB codes: 6XEZ, 7CXM, 7CXN), thus, detecting several hot spots, that were clustered to obtain ensemble consensus sites, through a combination of four different approaches. The comparison of data provided new insights about putative druggable sites that might be employed for further docking simulations on druggable surfaces of Nsps13, in a scenario of repurposing drugs.

Keywords: sars cov; helicase; towards identification; insights towards; silico insights

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.