LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Physiological Concentrations of Cimicifuga racemosa Extract Do Not Affect Expression of Genes Involved in Estrogen Biosynthesis and Action in Endometrial and Ovarian Cell Lines

Photo by nci from unsplash

In postmenopausal women, estrogen levels exclusively depend on local formation from the steroid precursors dehydroepiandrosterone sulfate and estrone sulfate (E1-S). Reduced estrogen levels are associated with menopausal symptoms. To mitigate… Click to show full abstract

In postmenopausal women, estrogen levels exclusively depend on local formation from the steroid precursors dehydroepiandrosterone sulfate and estrone sulfate (E1-S). Reduced estrogen levels are associated with menopausal symptoms. To mitigate these symptoms, more women nowadays choose medicine of natural origin, e.g., Cimicifuga racemosa (CR), instead of hormone replacement therapy, which is associated with an increased risk of breast cancer, stroke, and pulmonary embolism. Although CR treatment is considered safe, little is known about its effects on healthy endometrial and ovarian tissue and hormone-dependent malignancies, e.g., endometrial and ovarian cancers that arise during menopause. The aim of our study was to examine the effects of CR on the expression of genes encoding E1-S transporters and estrogen-related enzymes in control and cancerous endometrial and ovarian cell lines. CR affected the expression of genes encoding E1-S transporters and estrogen-related enzymes only at very high concentrations, whereas no changes were observed at physiological concentrations of CR. This suggests that CR does not exert estrogenic effects in endometrial and ovarian tissues and probably does not affect postmenopausal women’s risks of endometrial or ovarian cancer or the outcomes of endometrial and ovarian cancer patients.

Keywords: cimicifuga racemosa; ovarian cell; endometrial ovarian; cell lines; expression genes

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.