LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in Ischemic Stroke Mice via Upregulation of MiR-21-5p

Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) are one of the main factors responsible for the therapeutic effects of BMSCs. The study aimed to investigate whether BMSC-Exos could promote… Click to show full abstract

Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) are one of the main factors responsible for the therapeutic effects of BMSCs. The study aimed to investigate whether BMSC-Exos could promote angiogenesis in ischemic stroke mice via miR-21-5p. In ischemic stroke mice, the therapeutic effects of BMSC-Exos were evaluated by neurological functions and infarct volume. Microvessel density was detected by BrdU/vWF immunofluorescence staining. In in vitro experiments, the proangiogenic effects of BMSC-Exos were assessed via proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). The miR-21-5p inhibitor was transfected into BMSCs using Lipofectamine 2000. miR-21-5p expression was detected by qRT-PCR. The expression levels of VEGF, VEGFR2, Ang-1, and Tie-2 were determined by Western blot. BMSC-Exos significantly improved neurological functions and reduced infarct volume, upregulated microvessel density, and miR-21-5p expression after cerebral ischemia. In vitro assays revealed that BMSC-Exos enhanced HUVECs functions including proliferation, migration, and tube formation. BMSC-Exos increased the expression levels of VEGF, VEGFR2, Ang-1, and Tie-2. However, the proangiogenic effects of BMSC-Exos on HUVECs were reversed by the miR-21-5p inhibitor. These results suggest that BMSC-Exos could promote angiogenesis via miR-21-5p upregulation, making them an attractive treatment strategy for stroke recovery.

Keywords: bmsc exos; stroke mice; ischemic stroke; promote angiogenesis

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.