LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Rabep1-Mediated Endocytosis and Activation of Trypsinogen to Promote Pancreatic Stellate Cell Activation

Photo from wikipedia

Background: The pathogenesis of chronic pancreatitis is still unclear. Trypsinogen activation is an active factor in acute pancreatitis that has not been studied in the occurrence of chronic pancreatitis. Methods:… Click to show full abstract

Background: The pathogenesis of chronic pancreatitis is still unclear. Trypsinogen activation is an active factor in acute pancreatitis that has not been studied in the occurrence of chronic pancreatitis. Methods: Immunofluorescence was used to detect the location and expression of trypsinogen in chronic pancreatitis and normal tissues. Microarray and single-cell RNA-seq (scRNA-seq) were used to screen core genes and pathways in pancreatic stellate cells (PSCs). Western blotting and immunofluorescence were used to verify trypsinogen expression in PSCs after silencing Rabep1. Immunofluorescence and flow cytometry were used to validate trypsinogen activation and PSC activation after intervening in the endocytosis pathway. Results: Endocytosed trypsinogen was found in PSCs in CP clinical samples. Bioinformatic analysis showed that Rabep1 is a core gene that regulates trypsinogen endocytosis through the endocytosis pathway, verified by Western blot and immunofluorescence. Immunofluorescence and flow cytometry analyses confirmed the activation of trypsinogen and PSCs through the endocytosis pathway in PSCs. Conclusion: This study discovered a new mechanism by which trypsinogen affects the activation of PSCs and the occurrence and development of CP. Through communication between pancreatic acinar cells and PSCs, trypsinogen can be endocytosed by PSCs and activated by the Rabep1 gene.

Keywords: pancreatic stellate; trypsinogen; activation trypsinogen; endocytosis; activation; immunofluorescence

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.