LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Use of Bacterial Extracellular Vesicles for Gene Delivery to Host Cells

Photo by taylor65s from unsplash

Extracellular vesicles (EVs), which are nanosized membranous particles secreted from both prokaryotic and eukaryotic cells, can deliver various biological molecules, such as nucleic acids, proteins, and lipids, into recipient cells.… Click to show full abstract

Extracellular vesicles (EVs), which are nanosized membranous particles secreted from both prokaryotic and eukaryotic cells, can deliver various biological molecules, such as nucleic acids, proteins, and lipids, into recipient cells. However, contrary to what is known about eukaryotic EVs, whether bacterial EVs (bEVs) can be used as transporters for bioactive molecules is becoming a hot area of research. In this study, we electroporated enhanced green fluorescent protein (EGFP) genes and precursor microRNA of Cel-miR-39 (pre-Cel-miR-39) from isolated bEVs of Escherichia coli and Lactobacillus reuteri. The EGFP plasmid, synthetic EGFP RNA, and pre-Cel-miR-39 were successfully delivered into the murine microglial BV2 cells via bEVs. PCR and confocal microscopy analysis confirmed the transfer of the EGFP plasmid and RNA. The bEV-delivered exogenous pre-Cel-miR-39 was further processed into the mature form of Cel-miR-39; its incorporation into Ago2—a major component of the RNA-induced silencing complex—was assessed using RNA-immunoprecipitation–PCR. Taken together, bEVs can be used as vehicles to deliver genetic materials and for novel biotechnological applications, such as gene transfer and mRNA vaccines.

Keywords: gene; extracellular vesicles; pre cel; cel mir; cel

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.