LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2-Hydroxypropyl-beta-cyclodextrin Treatment Does Not Induce Atherosclerotic Lesion Regression in Western-Type Diet-Fed Apolipoprotein E Knockout Mice

Photo from wikipedia

2-Hydroxypropyl-beta-cyclodextrin (2HPβCD) is able to bind and solubilize unesterified cholesterol and may therefore be able to reverse the deposition of cholesterol in macrophages within the aortic vessel wall, a hallmark… Click to show full abstract

2-Hydroxypropyl-beta-cyclodextrin (2HPβCD) is able to bind and solubilize unesterified cholesterol and may therefore be able to reverse the deposition of cholesterol in macrophages within the aortic vessel wall, a hallmark of atherosclerotic cardiovascular disease. However, conflicting results regarding the potential of 2HPβCD to induce regression of established atherosclerotic lesions have been described. In the current study, we therefore also investigated the ability of 2HPβCD to stimulate cholesterol removal from macrophage foam cells in vitro and induce the regression of established atherosclerotic lesions in apolipoprotein E knockout (APOE KO) mice. In vitro studies using murine thioglycollate-elicited peritoneal macrophages verified that 2HPβCD is able to induce cholesterol efflux from macrophages in an ATP-binding cassette transporter-independent manner. Switching Western-type-diet-fed APOE KO mice with established atherosclerotic lesions back to a chow diet was associated with a reduction in the hypercholesterolemia extent and an increase in the absolute lesion size and plaque collagen-to-macrophage ratio. Importantly, parallel subcutaneous administration of 2HPβCD was not able to prevent the diet-switch-associated lesion growth or induce atherosclerosis regression. Although in our hands, 2HPβCD does effectively stimulate cellular cholesterol efflux from macrophages, we do not consider it worthwhile to further pursue 2HPβCD as therapeutic moiety in the atherosclerosis regression context.

Keywords: regression; apolipoprotein knockout; beta cyclodextrin; lesion; cholesterol; hydroxypropyl beta

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.