LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring Biomolecular Self-Assembly with Far-Infrared Radiation

Photo from wikipedia

Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects… Click to show full abstract

Physical engineering technology using far-infrared radiation has been gathering attention in chemical, biological, and material research fields. In particular, the high-power radiation at the terahertz region can give remarkable effects on biological materials distinct from a simple thermal treatment. Self-assembly of biological molecules such as amyloid proteins and cellulose fiber plays various roles in medical and biomaterials fields. A common characteristic of those biomolecular aggregates is a sheet-like fibrous structure that is rigid and insoluble in water, and it is often hard to manipulate the stacking conformation without heating, organic solvents, or chemical reagents. We discovered that those fibrous formats can be conformationally regulated by means of intense far-infrared radiations from a free-electron laser and gyrotron. In this review, we would like to show the latest and the past studies on the effects of far-infrared radiation on the fibrous biomaterials and to suggest the potential use of the far-infrared radiation for regulation of the biomolecular self-assembly.

Keywords: self assembly; biomolecular self; far infrared; infrared radiation; radiation

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.