LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biomolecular Mechanisms of Cardiorenal Protection with Sodium-Glucose Co-Transporter 2 Inhibitors

Photo by pawelmc from unsplash

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia and associated with an increased risk of morbidity and mortality, primarily from cardiovascular and renal diseases. Sodium-glucose cotransporter 2… Click to show full abstract

Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycemia and associated with an increased risk of morbidity and mortality, primarily from cardiovascular and renal diseases. Sodium-glucose cotransporter 2 inhibitors (SGLT2-Is) are novel drugs for the treatment of type 2 DM and heart failure (HF). SGLT2-Is mediate protective effects on both the renal and cardiovascular systems. This review addresses the current knowledge on the biomolecular mechanisms of the cardiorenal protective effects of SGLT2-Is, which appear to act mainly through non-glucose-mediated pathways. Cardiorenal protection mechanisms lead to reduced chronic renal disease progression and improved myocardial and coronary endothelial function. Concomitantly, it is possible to observe reflected changes in biomarkers linked with diabetic kidney disease and HF.

Keywords: biomolecular mechanisms; mechanisms cardiorenal; cardiorenal protection; protection sodium; sodium glucose

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.