LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Secondary Metabolites Diversity of Aspergillus unguis and Their Bioactivities: A Potential Target to Be Explored

Photo by brittaniburns from unsplash

Aspergillus unguis belongs to the Aspergillus section Nidulantes. This species is found in soils and organisms from marine environments, such as jellyfishes and sponges. The first chemical study reported in… Click to show full abstract

Aspergillus unguis belongs to the Aspergillus section Nidulantes. This species is found in soils and organisms from marine environments, such as jellyfishes and sponges. The first chemical study reported in the literature dates from 1970, with depsidones nidulin (1), nornidulin (2), and unguinol (3) being the first isolated compounds. Fifty-two years since this first study, the isolation and characterization of ninety-seven (97) compounds have been reported. These compounds are from different classes, such as depsides, depsidones, phthalides, cyclopeptides, indanones, diarylethers, pyrones, benzoic acid derivatives, orcinol/orsenillate derivatives, and sesterpenoids. In terms of biological activities, the first studies on isolated compounds from A. unguis came only in the 1990s. Considering the tendency for antiparasitic and antibiotics to become ineffective against resistant microorganisms and larvae, A. unguis compounds have also been extensively investigated and some compounds are considered very promising. In addition to these larvicidal and antimicrobial activities, these compounds also show activity against cancer cell lines, animal growth promotion, antimalarial and antioxidant activities. Despite the diversity of these compounds and reported biological activities, A. unguis remains an interesting target for studies on metabolic induction to produce new compounds, the determination of new biological activities, medicinal chemistry, structural modification, biotechnological approaches, and molecular modeling, which have yet to be extensively explored.

Keywords: metabolites diversity; aspergillus unguis; diversity; secondary metabolites; biological activities; target

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.