LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heritability of Protein and Metabolite Biomarkers Associated with COVID-19 Severity: A Metabolomics and Proteomics Analysis

Photo from wikipedia

Objectives: Prior studies have characterized protein and metabolite changes associated with SARS-CoV-2 infection; we hypothesized that these biomarkers may be part of heritable metabolic pathways in erythrocytes. Methods: Using a… Click to show full abstract

Objectives: Prior studies have characterized protein and metabolite changes associated with SARS-CoV-2 infection; we hypothesized that these biomarkers may be part of heritable metabolic pathways in erythrocytes. Methods: Using a twin study of erythrocyte protein and metabolite levels, we describe the heritability of, and correlations among, previously identified biomarkers that correlate with COVID-19 severity. We used gene ontology and pathway enrichment analysis tools to identify pathways and biological processes enriched among these biomarkers. Results: Many COVID-19 biomarkers are highly heritable in erythrocytes. Among heritable metabolites downregulated in COVID-19, metabolites involved in amino acid metabolism and biosynthesis are enriched. Specific amino acid metabolism pathways (valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; and arginine biosynthesis) are heritable in erythrocytes. Conclusions: Metabolic pathways downregulated in COVID-19, particularly amino acid biosynthesis and metabolism pathways, are heritable in erythrocytes. This finding suggests that a component of the variation in COVID-19 severity may be the result of phenotypic variation in heritable metabolic pathways; future studies will be necessary to determine whether individual variation in amino acid metabolism pathways correlates with heritable outcomes of COVID-19.

Keywords: metabolism; heritability; protein metabolite; covid severity; amino acid

Journal Title: Biomolecules
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.