LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modus operandi of ClC-K2 Cl− Channel in the Collecting Duct Intercalated Cells

Photo from wikipedia

The renal collecting duct is known to play a critical role in many physiological processes, including systemic water–electrolyte homeostasis, acid–base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb… Click to show full abstract

The renal collecting duct is known to play a critical role in many physiological processes, including systemic water–electrolyte homeostasis, acid–base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl−-permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters’ syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters’ syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl− intake and maintaining systemic acid–base homeostasis.

Keywords: duct; collecting duct; channel collecting; clc; intercalated cells; duct intercalated

Journal Title: Biomolecules
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.