LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Therapeutic Potential of Nanoparticles to Reduce Inflammation in Atherosclerosis

Photo by bermixstudio from unsplash

Chronic inflammation is one of the main determinants of atherogenesis. The traditional medications for treatment of atherosclerosis are not very efficient in targeting atherosclerotic inflammation. Most of these drugs are… Click to show full abstract

Chronic inflammation is one of the main determinants of atherogenesis. The traditional medications for treatment of atherosclerosis are not very efficient in targeting atherosclerotic inflammation. Most of these drugs are non-selective, anti-inflammatory and immunosuppressive agents that have adverse effects and very limited anti-atherosclerotic effects, which limits their systemic administration. New approaches using nanoparticles have been investigated to specifically deliver therapeutic agents directly on atherosclerotic lesions. The use of drug delivery systems, such as polymeric nanoparticles, liposomes, and carbon nanotubes are attractive strategies, but some limitations exist. For instance, nanoparticles may alter the drug kinetics, based on the pathophysiological mechanisms of the diseases. In this review, we will update pathophysiological evidence for the use of nanoparticles to reduce inflammation and potentially prevent atherogenesis in different experimental models.

Keywords: inflammation; reduce inflammation; potential nanoparticles; nanoparticles reduce; therapeutic potential; atherosclerosis

Journal Title: Biomolecules
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.