Previous studies have found that gene expression levels are associated with prognosis and some genes can be used to predict the survival risk of glioblastoma (GBM) patients. However, most of… Click to show full abstract
Previous studies have found that gene expression levels are associated with prognosis and some genes can be used to predict the survival risk of glioblastoma (GBM) patients. However, most of them just built the survival-related gene signature, and personal survival risk can be evaluated only in group. This study aimed to find the prognostic survival related genes of GBM, and construct survival risk prediction model, which can be used to evaluate survival risk by individual. We collected gene expression data and clinical information from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Cox regression analysis and LASSO-cox regression analysis were performed to get survival-related genes and establish the overall survival prediction model. The ROC curve and Kaplan Meier analysis were used to evaluate the prediction ability of the model in training set and two independent cohorts. We also analyzed the biological functions of survival-related genes by GO and KEGG enrichment analysis. We identified 99 genes associated with overall survival and selected 16 genes (IGFBP2, GPRASP1, C1R, CHRM3, CLSTN2, NELL1, SEZ6L2, NMB, ICAM5, HPCAL4, SNAP91, PCSK1N, PGBD5, INA, UCHL1 and LHX6) to establish the survival risk prediction model. Multivariate Cox regression analysis indicted that the risk score could predict overall survival independent of age and gender. ROC analyses showed that our model was more robust than four existing signatures. The sixteen genes can also be potential transcriptional biomarkers and the model can assist doctors on clinical decision-making and personalized treatment of GBM patients.
               
Click one of the above tabs to view related content.