LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SARS-CoV-2 Dysregulates Neutrophil Degranulation and Reduces Lymphocyte Counts

Photo by nci from unsplash

SARS-CoV-2, the virus that causes COVID-19, has given rise to one of the largest pandemics, affecting millions worldwide. High neutrophil-to-lymphocyte ratios have been identified as an important correlate to poor… Click to show full abstract

SARS-CoV-2, the virus that causes COVID-19, has given rise to one of the largest pandemics, affecting millions worldwide. High neutrophil-to-lymphocyte ratios have been identified as an important correlate to poor recovery rates in severe COVID-19 patients. However, the mechanisms underlying this clinical outcome and the reasons for its correlation to poor prognosis are unclear. Furthermore, the mechanisms involved in healthy neutrophils acquiring a SARS-CoV-2-mediated detrimental role are yet to be fully understood. In this study, we isolated circulating neutrophils from healthy donors for treatment with supernates from infected epithelial cells and direct infection with SARS-CoV-2 in vitro. Infected epithelial cells induced a dysregulated degranulation of primary granules with a decrease in myeloperoxidase (MPO), but slight increase in neutrophil elastase release. Infection of neutrophils resulted in an impairment of both MPO and elastase release, even though CD16 receptor shedding was upregulated. Importantly, SARS-CoV-2-infected neutrophils had a direct effect on peripheral blood lymphocyte counts, with decreasing numbers of CD19+ B cells, CD8+ T cells, and CD4+ T cells. Together, this study highlights the independent role of neutrophils in contributing to the aberrant immune responses observed during SARS-CoV-2 infection that may be further dysregulated in the presence of other immune cells.

Keywords: cov dysregulates; dysregulates neutrophil; lymphocyte counts; neutrophil degranulation; sars cov

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.