LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Myeloid-Specific Pyruvate-Kinase-Type-M2-Deficient Mice Are Resistant to Acute Lung Injury

Photo from wikipedia

Infiltration of polymorphonuclear neutrophils (PMNs) plays a central role in acute lung injury (ALI). The mechanisms governing PMN inflammatory responses, however, remain incompletely understood. Based on our recent study showing… Click to show full abstract

Infiltration of polymorphonuclear neutrophils (PMNs) plays a central role in acute lung injury (ALI). The mechanisms governing PMN inflammatory responses, however, remain incompletely understood. Based on our recent study showing a non-metabolic role of pyruvate kinase type M2 (PKM2) in controlling PMN degranulation of secondary and tertiary granules and consequent chemotaxis, here we tested a hypothesis that Pkm2-deficient mice may resist ALI due to impaired PMN inflammatory responses. We found that PMN aerobic glycolysis controlled the degranulation of secondary and tertiary granules induced by fMLP and PMA. Compared to WT PMNs, Pkm2-deficient (Pkm2-/-) PMNs displayed significantly less capacity for fMLP- or PMA-induced degranulation of secondary and tertiary granules, ROS production, and transfilter migration. In line with this, myeloid-specific Pkm2-/- mice exhibited impaired zymosan-induced PMN infiltration in the peritoneal cavity. Employing an LPS-induced ALI mouse model, LPS-treated Pkm2-/- mice displayed significantly less infiltration of inflammatory PMNs in the alveolar space and a strong resistance to LPS-induced ALI. Our results thus reveal that PKM2 is required for PMN inflammatory responses and deletion of PKM2 in PMN leads to an impaired PMN function but protection against LPS-induced ALI.

Keywords: acute lung; lung injury; kinase type; pkm2; mice; pyruvate kinase

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.