LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing Detection Accuracy of Computerized Sonographic Features and Computer-Assisted Reading Performance in Differentiating Thyroid Cancers

Photo from wikipedia

For ultrasound imaging of thyroid nodules, medical guidelines are all based on findings of sonographic features to provide clinicians management recommendations. Due to the recent development of artificial intelligence and… Click to show full abstract

For ultrasound imaging of thyroid nodules, medical guidelines are all based on findings of sonographic features to provide clinicians management recommendations. Due to the recent development of artificial intelligence and machine learning (AI/ML) technologies, there have been computer-assisted detection (CAD) software devices available for clinical use to detect and quantify the sonographic features of thyroid nodules. This study is to validate the accuracy of the computerized sonographic features (CSF) by a CAD software device, namely, AmCAD-UT, and then to assess how the reading performance of clinicians (readers) can be improved providing the computerized features. The feature detection accuracy is tested against the ground truth established by a panel of thyroid specialists and a multiple-reader multiple-case (MRMC) study is performed to assess the sequential reading performance with the assistance of the CSF. Five computerized features, including anechoic area, hyperechoic foci, hypoechoic pattern, heterogeneous texture, and indistinct margin, were tested, with AUCs ranging from 0.888~0.946, 0.825~0.913, 0.812~0.847, 0.627~0.77, and 0.676~0.766, respectively. With the five CSFs, the sequential reading performance of 18 clinicians is found significantly improved, with the AUC increasing from 0.720 without CSF to 0.776 with CSF. Our studies show that the computerized features are consistent with the clinicians’ findings and provide additional value in assisting sonographic diagnosis.

Keywords: computer assisted; accuracy; reading performance; sonographic features; detection

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.