LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Modified LBP Operator-Based Optimized Fuzzy Art Map Medical Image Retrieval System for Disease Diagnosis and Prediction

Photo from wikipedia

Medical records generated in hospitals are treasures for academic research and future references. Medical Image Retrieval (MIR) Systems contribute significantly to locating the relevant records required for a particular diagnosis,… Click to show full abstract

Medical records generated in hospitals are treasures for academic research and future references. Medical Image Retrieval (MIR) Systems contribute significantly to locating the relevant records required for a particular diagnosis, analysis, and treatment. An efficient classifier and effective indexing technique are required for the storage and retrieval of medical images. In this paper, a retrieval framework is formulated by adopting a modified Local Binary Pattern feature (AvN-LBP) for indexing and an optimized Fuzzy Art Map (FAM) for classifying and searching medical images. The proposed indexing method extracts LBP considering information from neighborhood pixels and is robust to background noise. The FAM network is optimized using the Differential Evaluation (DE) algorithm (DEFAMNet) with a modified mutation operation to minimize the size of the network without compromising the classification accuracy. The performance of the proposed DEFAMNet is compared with that of other classifiers and descriptors; the classification accuracy of the proposed AvN-LBP operator with DEFAMNet is higher. The experimental results on three benchmark medical image datasets provide evidence that the proposed framework classifies the medical images faster and more efficiently with lesser computational cost.

Keywords: fuzzy art; medical image; image retrieval; image; optimized fuzzy

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.