LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dienogest May Reduce Estradiol- and Inflammatory Cytokine-Induced Cell Viability and Proliferation and Inhibit the Pathogenesis of Endometriosis: A Cell Culture- and Mouse Model-Based Study

Photo by nci from unsplash

Dienogest (DNG) is a therapeutic medication used in endometriosis treatment. Limited data are available regarding its mechanism of action on endometrial cells. Using in vivo and in vitro models, we… Click to show full abstract

Dienogest (DNG) is a therapeutic medication used in endometriosis treatment. Limited data are available regarding its mechanism of action on endometrial cells. Using in vivo and in vitro models, we investigated whether DNG treatment causes significant biological changes in human endometrial stromal cells (ESCs). The markers related to the pathogenesis of endometriosis in ESCs were evaluated using estradiol, tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and IL-32, administered alone or in combination with DNG. Implanted endometrial tissues were compared between C57BL/6 mice that did or did not receive DNG treatment by using size measurements and immunohistochemistry. A significant decrease in cell viability, protein kinase B (AKT) phosphorylation, and the expression of p21-activated kinase 4 and vascular endothelial growth factor were observed in ESCs treated with estradiol plus DNG. Cell viability, AKT phosphorylation, and proliferating cell nuclear antigen (PCNA) expression also decreased significantly after TNF-α plus DNG treatment. Treatment with IL-1β or IL-32 plus DNG significantly decreased cell viability or PCNA expression, respectively. The size of the implanted endometrial tissue significantly decreased in mice treated with DNG, accompanied by decreased PCNA expression. Thus, DNG may reduce cell viability and proliferation induced by estradiol, TNF-α, IL-1β, and IL-32, and inhibit the endometriosis pathogenesis by decreasing PCNA expression.

Keywords: cell; dng; endometriosis; treatment; cell viability

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.