LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Near-Infrared Mechanically Switchable Elastomeric Film as a Dynamic Cell Culture Substrate

Photo from wikipedia

Commercial static cell culture substrates can usually not change their physical properties over time, resulting in a limited representation of the variation in biomechanical cues in vivo. To overcome this… Click to show full abstract

Commercial static cell culture substrates can usually not change their physical properties over time, resulting in a limited representation of the variation in biomechanical cues in vivo. To overcome this limitation, approaches incorporating gold nanoparticles to act as transducers to external stimuli have been employed. In this work, gold nanorods were embedded in an elastomeric matrix and used as photothermal transducers to fabricate biocompatible light-responsive substrates. The nanocomposite films analysed by lock-in thermography and nanoindentation show a homogeneous heat distribution and a greater stiffness when irradiated with NIR light. After irradiation, the initial stiffness values were recovered. In vitro experiments performed during NIR irradiation with NIH-3T3 fibroblasts demonstrated that these films were biocompatible and cells remained viable. Cells cultured on the light stiffened nanocomposite exhibited a greater proliferation rate and stronger focal adhesion clustering, indicating increased cell-surface binding strength.

Keywords: cell culture; cell; infrared mechanically; near infrared; mechanically switchable

Journal Title: Biomedicines
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.