LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lactobacillus plantarum Generate Electricity through Flavin Mononucleotide-Mediated Extracellular Electron Transfer to Upregulate Epithelial Type I Collagen Expression and Thereby Promote Microbial Adhesion to Intestine

Photo by ospanali from unsplash

The mechanism behind how flavin mononucleotide (FMN)-producing bacteria attach to a host intestine remains unclear. In order to address this issue, this study isolated the Gram-positive bacteria Lactobacillus plantarum from… Click to show full abstract

The mechanism behind how flavin mononucleotide (FMN)-producing bacteria attach to a host intestine remains unclear. In order to address this issue, this study isolated the Gram-positive bacteria Lactobacillus plantarum from Mongolian fermented Airag, named L. plantarum MA. These bacteria were further employed as the model microbes, and their electrogenic properties were first identified by their significant expression of type II NADH-quinone oxidoreductase. This study also demonstrated that the electrical activity of L. plantarum MA can be conducted through flavin mononucleotide (FMN)-based extracellular electron transfer, which is highly dependent on the presence of a carbon source in the medium. Our data show that approximately 15 µM of FMN, one of the key electron donors for the generation of electricity, can be produced from L. plantarum MA, as they were cultured in the presence of lactulose for 24 h. We further demonstrated that the electrical activity of L. plantarum MA can promote microbial adhesion and can thus enhance the colonization effectiveness of Caco-2 cells and mouse cecum. Such enhanced adhesiveness was attributed to the increased expression of type I collagens in the intestinal epithelium after treatment with L. plantarum MA. This study reveals the mechanism behind the electrogenic activity of L. plantarum MA and shows how the bacteria utilize electricity to modulate the protein expression of gut tissue for an enhanced adhesion process.

Keywords: plantarum; expression; electron; type; flavin mononucleotide; electricity

Journal Title: Biomedicines
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.