LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Osteoblast-like Cell Differentiation on 3D-Printed Scaffolds Using Various Concentrations of Tetra-Polymers

Photo from wikipedia

New bone formation starts from the initial reaction between a scaffold surface and the extracellular matrix. This research aimed to evaluate the effects of various amounts of calcium, phosphate, sodium,… Click to show full abstract

New bone formation starts from the initial reaction between a scaffold surface and the extracellular matrix. This research aimed to evaluate the effects of various amounts of calcium, phosphate, sodium, sulfur, and chloride ions on osteoblast-like cell differentiation using tetra-polymers of amorphous calcium phosphate (ACP), calcium sulfate hemihydrate (CSH), alginic acid, and hydroxypropyl methylcellulose. Moreover, 3D-printed scaffolds were fabricated to determine the ion distribution and cell differentiation. Various proportions of ACP/CSH were prepared in ratios of 0%, 13%, 15%, 18%, 20%, and 23%. SEM was used to observe the morphology, cell spreading, and ion complements. The scaffolds were also examined for calcium ion release. The mouse osteoblast-like cell line MC3T3-E1 was cultured to monitor the osteogenic differentiation, alkaline phosphatase (ALP) activity, total protein synthesis, osteocalcin expression (OCN), and calcium deposition. All 3D-printed scaffolds exhibited staggered filaments, except for the 0% group. The amounts of calcium, phosphate, sodium, and sulfur ions increased as the amounts of ACP/CSH increased. The 18%ACP/CSH group significantly exhibited the most ALP on days 7, 14, and 21, and the most OCN on days 14 and 21. Moreover, calcium deposition and mineralization showed the highest peak after 7 days. In conclusion, the 18%ACP/CSH group is capable of promoting osteoblast-like cell differentiation on 3D-printed scaffolds.

Keywords: cell; printed scaffolds; osteoblast like; like cell; differentiation; cell differentiation

Journal Title: Biomimetics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.