LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Neodymium Selenide Nanoparticles: Greener Synthesis and Structural Characterization

Photo from wikipedia

This investigation presents the greener biomimetic fabrication of neodymium selenide nanoparticles (Nd2Se3 NPs) deploying nitrate-dependent reductase as a reducing (or redox) agent, extracted from the fungus, Fusarium oxysporum. The Nd2Se3… Click to show full abstract

This investigation presents the greener biomimetic fabrication of neodymium selenide nanoparticles (Nd2Se3 NPs) deploying nitrate-dependent reductase as a reducing (or redox) agent, extracted from the fungus, Fusarium oxysporum. The Nd2Se3 NPs, with an average size of 18 ± 1 nm, were fabricated with the assistance of a synthetic peptide comprising an amino acid sequence (Glu-Cys)n-Gly, which functioned as a capping molecule. Further, the NPs were characterized using multiple techniques such as UV-Vis spectroscopy, fluorescence, dynamic light scattering (DLS), and XRD. The hydrodynamic radii of biogenic polydispersed Nd2Se3 NPs were found to be 57 nm with PDI value of 0.440 under DLS. The as-made Nd2Se3NPs were water-dispersible owing to the existence of hydrophilic moieties (-NH2, -COOH, -OH) in the capping peptide. Additionally, these functionalities render the emulsion highly stable (zeta potential −9.47 mV) with no visible sign of agglomeration which bodes well for their excellent future prospects in labeling and bioimaging endeavors.

Keywords: nanoparticles greener; greener synthesis; selenide nanoparticles; neodymium selenide; synthesis structural; nd2se3 nps

Journal Title: Biomimetics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.