LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease

Photo from wikipedia

Each year, unwanted plant pests and diseases, such as Hendel or potato soft rot, cause damage to crops and ecosystems all over the world. To continue to feed the growing… Click to show full abstract

Each year, unwanted plant pests and diseases, such as Hendel or potato soft rot, cause damage to crops and ecosystems all over the world. To continue to feed the growing population and protect the global ecosystems, the surveillance and management of the spread of these pests and diseases are crucial. Traditional methods of detection are often expensive, bulky and require expertise and training. Therefore, inexpensive, portable, and user-friendly methods are required. These include the use of different gas-sensing technologies to exploit volatile organic compounds released by plants under stress. These methods often meet these requirements, although they come with their own set of advantages and disadvantages, including the sheer number of variables that affect the profile of volatile organic compounds released, such as sensitivity to environmental factors and availability of soil nutrients or water, and sensor drift. Furthermore, most of these methods lack research on their use under field conditions. More research is needed to overcome these disadvantages and further understand the feasibility of the use of these methods under field conditions. This paper focuses on applications of different gas-sensing technologies from over the past decade to detect plant pests and diseases more efficiently.

Keywords: pests diseases; volatile organic; plant pests; detection; organic compounds

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.