LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Self-Assembly Nanoparticles Based on DVDMS for Fenton-Like Ion Delivery and Enhanced Sonodynamic Therapy

Photo from wikipedia

Upon harnessing low-intensity ultrasound to activate sonosensitizers, sonodynamic therapy (SDT) induces cancer cell death through the reactive oxygen species (ROS) mediated pathway. Compared with photodynamic therapy (PDT), SDT possesses numerous… Click to show full abstract

Upon harnessing low-intensity ultrasound to activate sonosensitizers, sonodynamic therapy (SDT) induces cancer cell death through the reactive oxygen species (ROS) mediated pathway. Compared with photodynamic therapy (PDT), SDT possesses numerous advantages, including deeper tissue penetration, higher accuracy, fewer side effects, and better patient compliance. Sinoporphyrin sodium (DVDMS), a sonosensitizer approved by the FDA, has drawn abundant attention in clinical research, but there are some deficiencies. In order to further improve the efficiency of DVDMS, many studies have applied self-assembly nanotechnology to modify it. Furthermore, the combined applications of SDT/chemodynamic therapy (CDT) have become a research hotspot in tumor therapy. Therefore, we explored the self-assembly of nanoparticles based on DVDMS and copper to combine SDT and CDT. A cost-effective sonosensitizer was synthesized by dropping CuCl2 into the DVDMS solution with the assistance of PVP. The results revealed that the nanostructures could exert excellent treatment effects on tumor therapy and perform well for PET imaging, indicating the potential for cancer theranostics. In vitro and in vivo experiments showed that the nanoparticles have outstanding biocompatibility, higher ROS production efficiency, and antitumor efficacy. We believe this design can represent a simple approach to combining SDT and CDT with potential applications in clinical treatment and PET imaging.

Keywords: assembly nanoparticles; nanoparticles based; self assembly; therapy; based dvdms; sonodynamic therapy

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.