LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classification of Dysphonic Voices in Parkinson’s Disease with Semi-Supervised Competitive Learning Algorithm

Photo by cdc from unsplash

This article proposes a novel semi-supervised competitive learning (SSCL) algorithm for vocal pattern classifications in Parkinson’s disease (PD). The acoustic parameters of voice records were grouped into the families of… Click to show full abstract

This article proposes a novel semi-supervised competitive learning (SSCL) algorithm for vocal pattern classifications in Parkinson’s disease (PD). The acoustic parameters of voice records were grouped into the families of jitter, shimmer, harmonic-to-noise, frequency, and nonlinear measures, respectively. The linear correlations were computed within each acoustic parameter family. According to the correlation matrix results, the jitter, shimmer, and harmonic-to-noise parameters presented as highly correlated in terms of Pearson’s correlation coefficients. Then, the principal component analysis (PCA) technique was implemented to eliminate the redundant dimensions of the acoustic parameters for each family. The Mann–Whitney–Wilcoxon hypothesis test was used to evaluate the significant difference of the PCA-projected features between the healthy subjects and PD patients. Eight dominant PCA-projected features were selected based on the eigenvalue threshold criterion and the statistical significance level (p < 0.05) of the hypothesis test. The SSCL algorithm proposed in this paper included the procedures of the competitive prototype seed selection, K-means optimization, and the nearest neighbor classifications. The pattern classification experimental results showed that the proposed SSCL method can provide the excellent diagnostic performances in terms of accuracy (0.838), recall (0.825), specificity (0.85), precision (0.846), F-score (0.835), Matthews correlation coefficient (0.675), area under the receiver operating characteristic curve (0.939), and Kappa coefficient (0.675), which were consistently better than those results of conventional KNN or SVM classifiers.

Keywords: semi supervised; supervised competitive; parkinson disease; competitive learning

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.