LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and Characterization of Acute Myocardial Infarction Myoglobin Biomarker Based on Chromium-Doped Zinc Oxide Nanoparticles

Photo from wikipedia

In this article, we describe the fabrication and characterization of a sensor for acute myocardial infarction that detects myoglobin biomarkers using chromium (Cr)-doped zinc oxide (ZnO) nanoparticles (NPs). Pure and… Click to show full abstract

In this article, we describe the fabrication and characterization of a sensor for acute myocardial infarction that detects myoglobin biomarkers using chromium (Cr)-doped zinc oxide (ZnO) nanoparticles (NPs). Pure and Cr-doped ZnO NPs (13 × 1017, 20 × 1017, and 32 × 1017 atoms/cm3 in the solid phase) were synthesized by a facile low-temperature sol-gel method. Synthesized NPs were examined for structure and morphological analysis using various techniques to confirm the successful formation of ZnO NPs. Zeta potential was measured in LB media at a negative value and increased with doping. XPS spectra confirmed the presence of oxygen deficiency in the synthesized material. To fabricate the sensor, synthesized NPs were screen-printed over a pre-fabricated gold-coated working electrode for electrochemical detection of myoglobin (Mb). Cr-doped ZnO NPs doped with 13 × 1017 Cr atomic/cm3 revealed the highest sensitivity of ~37.97 μA.cm−2nM−1 and limit of detection (LOD) of 0.15 nM for Mb with a response time of ≤10 ms. The interference study was carried out with cytochrome c (Cyt-c) due to its resemblance with Mb and human serum albumin (HSA) abundance in the blood and displayed distinct oxidation potential and current values for Mb. Cr-doped ZnO NP-based Mb biosensors showed 3 times higher sensitivity as compared to pure ZnO NP-based sensors.

Keywords: fabrication characterization; doped zinc; zno; myocardial infarction; acute myocardial; chromium doped

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.