LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of CeO2/GCE for Electrochemical Sensing of Hydroquinone

Photo by sharonmccutcheon from unsplash

Hydroquinone is a widely used derivative of phenol which has a negative influence on human beings and the environment. The determination of the accurate amount of hydroquinone is of great… Click to show full abstract

Hydroquinone is a widely used derivative of phenol which has a negative influence on human beings and the environment. The determination of the accurate amount of hydroquinone is of great importance. Recently, the fabrication of an electrochemical sensing device has received enormous attention. In this study, we reported on the facile synthesis of cerium dioxide (CeO2) nanoparticles (NPs). The CeO2 NPs were synthesized using cerium nitrate hexahydrate as a precursor. For determining the physicochemical properties of synthesized CeO2 NPs, various advanced techniques, viz., powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS), were studied. Further, these synthesized CeO2 NPs were used for the modification of a glassy carbon electrode (CeO2/GCE), which was utilized for the sensing of hydroquinone (HQ). A decent detection limit of 0.9 µM with a sensitivity of 0.41 µA/µM cm2 was exhibited by the modified electrode (CeO2/GCE). The CeO2/GCE also exhibited good stability, selectivity, and repeatability towards the determination of HQ.

Keywords: spectroscopy; sensing hydroquinone; ceo2 gce; ceo2; electrochemical sensing

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.