LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Peptide Nanosheet-Inspired Biomimetic Synthesis of CuS Nanoparticles on Ti3C2 Nanosheets for Electrochemical Biosensing of Hydrogen Peroxide

Photo from wikipedia

Hydrogen peroxide (H2O2) is one of the intermediates or final products of biological metabolism and participates in many important biological processes of life activities. The detection of H2O2 is of… Click to show full abstract

Hydrogen peroxide (H2O2) is one of the intermediates or final products of biological metabolism and participates in many important biological processes of life activities. The detection of H2O2 is of great significance in clinical disease monitoring, environmental protection, and bioanalysis. In this study, Ti3C2-based nanohybrids are prepared by the biological modification and self-assembled peptide nanosheets (PNSs)-based biomimetic synthesis of copper sulfide nanoparticles (CuS NPs), which show potential application in the fabrication of low-cost and high-performance electrochemical H2O2 biosensors. The synthesized CuS-PNSs/Ti3C2 nanohybrids exhibit excellent electrochemical performance towards H2O2, in which CuS NPs can catalyze the decomposition of H2O2 and realize the transformation from a chemical signal to an electrical signal to achieve the purpose of H2O2 detection. The prepared CuS-PNSs/Ti3C2-based electrochemical biosensor platform exhibits a wide detection range (5 μM–15 mM) and a low detection limit (0.226 μM). In addition, it reveals good selectivity and stability and can realize the monitoring of H2O2 in a complex environment. The successful biomimetic synthesis of CuS-PNSs/Ti3C2 hybrid nanomaterials provides a green and friendly strategy for the design and synthesis of functional nanomaterials and also provides a new inspiration for the construction of highly effective electrochemical biosensors for practical detection of H2O2 in various environments.

Keywords: hydrogen peroxide; synthesis; biomimetic synthesis; h2o2; detection; cus

Journal Title: Biosensors
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.