miRNA is considered a novel biomarker for cancer diagnosis and due to its low level in vivo, the development of new detection methods for it has become a research hotspot… Click to show full abstract
miRNA is considered a novel biomarker for cancer diagnosis and due to its low level in vivo, the development of new detection methods for it has become a research hotspot in recent years. Here, we firstly found that miR-625-5p was significantly upregulated in colorectal cancer tissues by means of differential expression analysis of the dbDEMC database and clinical validation. Subsequently, it was found that miR-625-5p promoted cell proliferation and migration but inhibited apoptosis through phenotypic experiments; thus, we initially identified miR-625-5p as a potential biomarker for colorectal cancer. Moreover, in order to monitor slight changes in the miR-625-5p level, we developed a novel detection method for it based on strand displacement amplification (SDA). In this system, a hairpin was designed to recognize and pair with miR-625-5p, which was used as a primer to initiate SDA, and a large number of complementary DNAs were generated via cyclic amplification, followed by the addition of SYBR Gold to achieve quantitative analysis of miR-625-5p. Moreover, this method showed a good response to miR-625-5p with a detection limit of 8.6 pM and a dynamic range of 0.01 to 200 nM, and the specificity of it was verified using a set of other miRNAs as an interference. Finally, we set up different concentrations of biologic samples for detection to verify the practicability of the method. The results of this study indicate that this detection method has great potential in clinical diagnosis.
               
Click one of the above tabs to view related content.