LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SnO2-Based Ultra-Flexible Humidity/Respiratory Sensor for Analysis of Human Breath

Photo from wikipedia

Developing ultraflexible sensors using metal oxides is challenging due to the high-temperature annealing step in the fabrication process. Here, we demonstrate the ultraflexible relative humidity (RH) sensor on food plastic… Click to show full abstract

Developing ultraflexible sensors using metal oxides is challenging due to the high-temperature annealing step in the fabrication process. Here, we demonstrate the ultraflexible relative humidity (RH) sensor on food plastic wrap by using 808 nm near-infrared (NIR) laser annealing for 1 min at a low temperature (26.2–40.8 °C). The wettability of plastic wraps coated with sol-gel solution is modulated to obtain uniform films. The surface morphology, local temperature, and electrical properties of the SnO2 resistor under NIR laser irradiation with a power of 16, 33, and 84 W/cm2 are investigated. The optimal device can detect wide-range RH from 15% to 70% with small incremental changes (0.1–2.2%). X-ray photoelectron spectroscopy reveals the relation between the surface binding condition and sensing response. Finally, the proposed sensor is attached onto the face mask to analyze the real-time human breath pattern in slow, normal, and fast modes, showing potential in wearable electronics or respiration monitoring.

Keywords: humidity; based ultra; sno2 based; human breath; sensor

Journal Title: Biosensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.