LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A CRISPR-Cas and Tat Peptide with Fluorescent RNA Aptamer System for Signal Amplification in RNA Imaging

Photo from wikipedia

We reported on an efficient RNA imaging strategy based on a CRISPR-Cas and Tat peptide with a fluorescent RNA aptamer (TRAP-tag). Using modified CRISPR-Cas RNA hairpin binding proteins fused with… Click to show full abstract

We reported on an efficient RNA imaging strategy based on a CRISPR-Cas and Tat peptide with a fluorescent RNA aptamer (TRAP-tag). Using modified CRISPR-Cas RNA hairpin binding proteins fused with a Tat peptide array that recruits modified RNA aptamers, this simple and sensitive strategy is capable of visualizing endogenous RNA in cells with high precision and efficiency. In addition, the modular design of the CRISPR-TRAP-tag facilitates the substitution of sgRNAs, RNA hairpin binding proteins, and aptamers in order to optimize imaging quality and live cell affinity. With CRISPR-TRAP-tag, exogenous GCN4, endogenous mRNA MUC4, and lncRNA SatIII were distinctly visualized in single live cells.

Keywords: peptide fluorescent; rna imaging; rna; cas tat; crispr cas; tat peptide

Journal Title: Biosensors
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.