LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autocrine Neuromodulation and Network Activity Patterns in the Locus Coeruleus of Newborn Rat Slices

Photo by adroman from unsplash

Already in newborns, the locus coeruleus (LC) controls multiple brain functions and may have a complex organization as in adults. Our findings in newborn rat brain slices indicate that LC… Click to show full abstract

Already in newborns, the locus coeruleus (LC) controls multiple brain functions and may have a complex organization as in adults. Our findings in newborn rat brain slices indicate that LC neurons (i) generate at ~1 Hz a ~0.3 s-lasting local field potential (LFP) comprising summated phase-locked single spike discharge, (ii) express intrinsic ‘pacemaker’ or ‘burster’ properties and (iii) receive solely excitatory or initially excitatory–secondary inhibitory inputs. μ-opioid or ɑ2 noradrenaline receptor agonists block LFP rhythm at 100–250 nM whereas slightly lower doses transform its bell-shaped pattern into slower crescendo-shaped multipeak bursts. GABAA and glycine receptors hyperpolarize LC neurons to abolish rhythm which remains though unaffected by blocking them. Rhythm persists also during ionotropic glutamate receptor (iGluR) inhibition whereas <10 mV depolarization during iGluR agonists accelerates spiking to cause subtype-specific fast (spindle-shaped) LFP oscillations. Similar modest neuronal depolarization causing a cytosolic Ca2+ rise occurs (without effect on neighboring astrocytes) during LFP acceleration by CNQX activating a TARP-AMPA-type iGluR complex. In contrast, noradrenaline lowers neuronal Ca2+ baseline via ɑ2 receptors, but evokes an ɑ1 receptor-mediated ‘concentric’ astrocytic Ca2+ wave. In summary, the neonatal LC has a complex (possibly modular) organization to enable discharge pattern transformations that might facilitate discrete actions on target circuits.

Keywords: locus coeruleus; newborn rat; autocrine neuromodulation; neuromodulation network; network activity

Journal Title: Brain Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.