Accumulated studies have determined the changes in functional connectivity in autism spectrum disorder (ASD) and spurred the application of machine learning for classifying ASD. Graph Neural Network provides a new… Click to show full abstract
Accumulated studies have determined the changes in functional connectivity in autism spectrum disorder (ASD) and spurred the application of machine learning for classifying ASD. Graph Neural Network provides a new method for network analysis in brain disorders to identify the underlying network features associated with functional deficits. Here, we proposed an improved model of Graph Isomorphism Network (GIN) that implements the Weisfeiler-Lehman (WL) graph isomorphism test to learn the graph features while taking into account the importance of each node in the classification to improve the interpretability of the algorithm. We applied the proposed method on multisite datasets of resting-state functional connectome from Autism Brain Imaging Data Exchange (ABIDE) after stringent quality control. The proposed method outperformed other commonly used classification methods on five different evaluation metrics. We also identified salient ROIs in visual and frontoparietal control networks, which could provide potential neuroimaging biomarkers for ASD identification.
               
Click one of the above tabs to view related content.