Ischemic stroke is a life-threatening condition that also frequently results in long-term disability. Currently, intravenous thrombolysis with tissue plasminogen activator and mechanical thrombectomy is the most popular treatment. However, the… Click to show full abstract
Ischemic stroke is a life-threatening condition that also frequently results in long-term disability. Currently, intravenous thrombolysis with tissue plasminogen activator and mechanical thrombectomy is the most popular treatment. However, the narrow time window and related complications limit the treatment benefits. Exosomes have recently emerged as ideal therapeutic candidates for ischemic stroke with the ability to pass through the blood_brain barrier and mediate intercellular communication, in addition, exosomes and their contents can be bioengineered to implement targeted delivery. In the last two decades, exosomes and exosomal noncoding RNAs have been found to be involved in the pathophysiological progression of ischemic stroke, including atherosclerosis, apoptosis, inflammation, oxidative stress, and neurovascular remodeling. In this review, we describe the latest progress regarding the role of exosomal long noncoding RNAs and circular RNAs in the occurrence, progression, and recovery of ischemic stroke. Exploration of exosomal noncoding RNAs and their correlated effects in ischemic stroke may facilitate accurate diagnosis, and they may serve as new therapeutic targets for the disease.
               
Click one of the above tabs to view related content.