LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transcriptome Sequencing Reveal That Rno-Rsf1_0012 Participates in Levodopa-Induced Dyskinesia in Parkinson’s Disease Rats via Binding to Rno-mir-298-5p

Levodopa-induced dyskinesia (LID) is a common complication of chronic dopamine replacement therapy in the treatment of Parkinson’s disease (PD), and a noble cause of disability in advanced PD patients. Circular… Click to show full abstract

Levodopa-induced dyskinesia (LID) is a common complication of chronic dopamine replacement therapy in the treatment of Parkinson’s disease (PD), and a noble cause of disability in advanced PD patients. Circular RNA (circRNA) is a novel type of non-coding RNA with a covalently closed-loop structure, which can regulate gene expression and participate in many biological processes. However, the biological roles of circRNAs in LID are not completely known. In the present study, we established typical LID rat models by unilateral lesions of the medial forebrain bundle and repeated levodopa therapy. High-throughput next-generation sequencing was used to screen circRNAs differentially expressed in the brain of LID and non-LID (NLID) rats, and key circRNAs were selected according to bioinformatics analyses. Regarding fold change ≥2 and p < 0.05 as the cutoff value, there were a total of 99 differential circRNAs, including 39 up-regulated and 60 down-regulated circRNAs between the NLID and LID groups. The expression of rno-Rsf1_0012 was significantly increased in the striatum of LID rats and competitively bound rno-mir-298-5p. The high expression of target genes PCP and TBP in LID rats also supports the conclusion that rno-Rsf1_0012 may be related to the occurrence of LID.

Keywords: induced dyskinesia; rno; rsf1 0012; rno rsf1; levodopa induced

Journal Title: Brain Sciences
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.