LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Paired Associative Stimulation on Cortical Plasticity in Agonist–Antagonist Muscle Representations

Photo from wikipedia

Paired associative stimulation (PAS) increases and decreases cortical excitability in primary motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity,… Click to show full abstract

Paired associative stimulation (PAS) increases and decreases cortical excitability in primary motor cortex (M1) neurons, depending on the spike timing-dependent plasticity, i.e., long-term potentiation (LTP)- and long-term depression (LTD)-like plasticity, respectively. However, how PAS affects the cortical circuits for the agonist and antagonist muscles of M1 is unclear. Here, we investigated the changes in the LTP- and LTD-like plasticity for agonist and antagonist muscles during PAS: 200 pairs of 0.25-Hz peripheral electric stimulation of the right median nerve at the wrist, followed by a transcranial magnetic stimulation of the left M1 with an interstimulus interval of 25 ms (PAS-25 ms) and 10 ms (PAS-10 ms). The unconditioned motor evoked potential amplitudes of the agonist muscles were larger after PAS-25 ms than after PAS-10 ms, while those of the antagonist muscles were smaller after PAS-25 ms than after PAS-10 ms. The γ-aminobutyric acid A (GABAA)- and GABAB-mediated cortical inhibition for the agonist and antagonist muscles were higher after PAS-25 ms than after PAS-10 ms. The cortical excitability for the agonist and antagonist muscles reciprocally and topographically increased and decreased after PAS, respectively; however, GABAA and GABAB-mediated cortical inhibitory functions for the agonist and antagonist muscles were less topographically decreased after PAS-10 ms. Thus, PAS-25 ms and PAS-10 ms differentially affect the LTP- and LTD-like plasticity in agonist and antagonist muscles.

Keywords: pas; plasticity agonist; antagonist muscles; agonist antagonist; stimulation

Journal Title: Brain Sciences
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.