For measuring the structural health of buildings, high-performance vibration detection devices are used in a structural health monitoring (SHM) system, which consists of a sensor and a data logger. Those… Click to show full abstract
For measuring the structural health of buildings, high-performance vibration detection devices are used in a structural health monitoring (SHM) system, which consists of a sensor and a data logger. Those devices are seismographs or devices with high-performance sensors which are expensive. Recently, smartphones are being used as seismographs to accumulate big data of earthquake wave detection because they have accelerometers of microelectromechanical systems. Since a smartphone has the functions of a detection sensor and a data logger, a low-cost SHM system can be developed by using a low-cost smartphone. In this paper, smartphones were used to confirm the possibility of the development of a low-cost SHM system. To evaluate the vibration detection performance from small displacement and large displacement, smartphones were installed in a specimen of a large shaking table test. The specimen is a scale model of a two-story non-reinforced masonry-filled reinforce concrete (RC) frame building. The natural period and interstory drift ratio were used as the evaluation criteria. The natural period estimated by the smartphone data agreed with that found by the piezoelectric accelerometer data. For estimating the building deformation, which is related to building stability, the measurement performance for large deformation using smartphones was evaluated. The smartphones have 90% or higher accuracies for the estimation of the maximum acceleration and displacement.
               
Click one of the above tabs to view related content.