Targeting of the programmed cell death protein (PD)-1/programmed death-ligand 1 (PD-L1) axis has shown a significant clinical impact in several tumor types. Accordingly, our phase II NIBIT-MESO-1 study demonstrated an… Click to show full abstract
Targeting of the programmed cell death protein (PD)-1/programmed death-ligand 1 (PD-L1) axis has shown a significant clinical impact in several tumor types. Accordingly, our phase II NIBIT-MESO-1 study demonstrated an improved clinical efficacy in mesothelioma patients treated with the anti-PD-L1 durvalumab combined with the anti-cytotoxic T-lymphocyte antigen (CTLA)-4 tremelimumab, as compared to tremelimumab alone. Due to the promising therapeutic activity of immune check-point inhibitors (ICIs) in mesothelioma patients, the identification of biomarkers predictive of response to treatment is of crucial relevance. The prognostic role of soluble PD-L1 (sPD-L1) proposed in cancer patients prompted us to investigate this protein in sera from mesothelioma patients (n = 40) enrolled in the NIBIT-MESO-1 study. A significant (p < 0.001) increase in sPD-L1 levels was detected in patients after the first cycle and during therapy vs. baseline. A longer overall survival (OS) was observed in patients with sPD-L1 concentrations below (at baseline, d1C2, d1C5 (p < 0.01)) or FC values above (p < 0.05 at d1C2, d1C3, d1C5) their statistically calculated optimal cut-offs. On the basis of these initial results, the specific role of CTLA-4-, PD-L1-, or PD-1-targeting on sPD-L1 release was then investigated in sera from 81 additional ICI-treated solid cancer patients. Results showed a significant (p < 0.001) increase of sPD-L1 levels during therapy compared to baseline only in anti-PD-L1-treated patients, supporting the specific involvement of PD-L1 targeting in the release of its soluble form. Our findings suggest that sPD-L1 represents a predictive biomarker of clinical response to anti-PD-L1 cancer immunotherapy.
               
Click one of the above tabs to view related content.