Simple Summary Ecotropic viral integration site 1 (EVI1) is transcriptionally activated in a subset of myeloid leukemias. Since its discovery, other isoforms of EVI1 have been identified. It has been… Click to show full abstract
Simple Summary Ecotropic viral integration site 1 (EVI1) is transcriptionally activated in a subset of myeloid leukemias. Since its discovery, other isoforms of EVI1 have been identified. It has been shown that EVI1 and its isoforms mainly function as transcription factors and to play important roles not only in leukemia but also in a variety of solid tumors. To provide a comprehensive understanding of this family of proteins, we summarize the currently available knowledge of expression and function of EVI1 and its isoforms in leukemia and solid tumors and provide insights of future studies. Abstract The EVI1 gene encodes for a transcription factor with two zinc finger domains and is transcriptionally activated in a subset of myeloid leukemias. In leukemia, the transcriptional activation of EVI1 usually results from chromosomal rearrangements. Besides leukemia, EVI1 has also been linked to solid tumors including breast cancer, lung cancer, ovarian cancer and colon cancer. The MDS1/EVI1 gene is encoded by the same locus as EVI1. While EVI1 functions as a transcription repressor, MDS1/EVI1 acts as a transcription activator. The fusion protein encoded by the AML1/MDS1/EVI1 chimeric gene, resulting from chromosomal translocations in a subset of chronic myeloid leukemia, exhibits a similar function to EVI1. EVI1 has been shown to regulate cell proliferation, differentiation and apoptosis, whereas the functions of MDS1/EVI1 and AML1/MDS1/EVI1 remain elusive. In this review, we summarize the genetic structures, biochemical properties and biological functions of these proteins in cancer.
               
Click one of the above tabs to view related content.